- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000101000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Ratnasingham, Sujeevan (2)
-
E., Eduardo Zattara (1)
-
I., Christina Ellison (1)
-
Irina, Cherneva (1)
-
Junoy, Juan and (1)
-
L., Jon Norenburg (1)
-
L., Megan Schwartz (1)
-
Lesperance, Nathaniel (1)
-
Taylor, Graham (1)
-
of, Barcode Life (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the context of pressing climate change challenges and the significant biodiversity loss among arthropods, automated taxonomic classification from organismal images is a subject of intense research. However, traditional AI pipelines based on deep neural visual architectures such as CNNs or ViTs face limitations such as degraded performance on the long-tail of classes and the inability to reason about their predictions. We integrate image captioning and retrieval-augmented generation (RAG) with large language models (LLMs) to enhance biodiversity monitoring, showing particular promise for characterizing rare and unknown arthropod species. While a naive Vision-Language Model (VLM) excels in classifying images of common species, the RAG model enables classification of rarer taxa by matching explicit textual descriptions of taxonomic features to contextual biodiversity text data from external sources. The RAG model shows promise in reducing overconfidence and enhancing accuracy relative to naive LLMs, suggesting its viability in capturing the nuances of taxonomic hierarchy, particularly at the challenging family and genus levels. Our findings highlight the potential for modern vision-language AI pipelines to support biodiversity conservation initiatives, emphasizing the role of comprehensive data curation and collaboration with citizen science platforms to improve species identification, unknown species characterization and ultimately inform conservation strategies.more » « lessFree, publicly-accessible full text available May 19, 2026
-
Irina, Cherneva; I., Christina Ellison; E., Eduardo Zattara; L., Jon Norenburg; L., Megan Schwartz; Junoy, Juan and; of, Barcode Life; Ratnasingham, Sujeevan (, Barcode of Life Data Systems)DNA barcode data hosted in the Data Portal of the Barcode of Life Data Systems. Records consist of specimen metadata, specimen images, and sequence data.more » « less
An official website of the United States government
